Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(42): 16760-16769, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36219544

RESUMEN

Molybdenum nitrides and oxynitrides have been increasingly realized as (electro)catalysts for a variety of reactions. In this context, the cubic "γ-Mo2N", also known to contain oxygen in the bulk, is of particular interest. The γ phase is typically derived from ammonolysis of MoO3, and a high temperature is needed to fully react the stable MoO2 intermediate that often forms along the reaction pathway. In this study, ammonolysis of atypical bronze (HxMoO3) and peroxo (H2MoO5) precursors was undertaken to avoid the formation of this undesired intermediate with the aim of synthesizing "γ-Mo2N" at reduced temperatures and thus with a high surface area. It was found, using in situ powder diffraction, that, when the phase I bronze (x ≈ 0.3) served as the precursor, MoO2 formed as an intermediate and was retained in the reaction product until 700 °C. In contrast, ammonolysis of the phase III bronze (x ≈ 1.7) and of H2MoO5 circumvented the MoO2 intermediate. From these latter two precursors, "γ-Mo2N" was formed at the lowest maximum reaction temperatures reported in the literature, namely, 480 °C in the case of HxMoO3-III and 380 °C for H2MoO5. The resulting products displayed extremely high surface areas of 206 and 152 m2/g, respectively, presumably as a consequence of the low synthesis temperatures. While the HxMoO3-III precursor showed evidence of a topotactic transformation pathway, with morphological similarity between precursor and product phases, H2MoO5 transformed via amorphization. Electrochemical characterization showed moderate activity for the hydrogen evolution reaction (HER), which increased after exposure to reducing potentials and loosely scaled with the catalyst-specific surface area. This work points toward new low-temperature synthesis pathways for accessing molybdenum (oxy)nitrides with high surface areas.

2.
J Am Chem Soc ; 144(30): 13547-13555, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35878066

RESUMEN

Heteroanionic materials exhibit great structural diversity with adjustable electronic, magnetic, and optical properties that provide immense opportunities for materials design. Within this material family, perovskite oxynitrides incorporate earth-abundant nitrogen with differing size, electronegativity, and charge into oxide, enabling a unique approach to tuning metal-anion covalency and energy of metal cation electronic states, thereby achieving functionality that may be inaccessible from their perovskite oxide counterparts, which have been widely studied as electrocatalysts. However, it is very challenging to directly obtain such materials due to the poor thermal stability of late transition metals coordinated with N and/or at high valence states. Herein, we introduce an effective strategy to prepare a perovskite oxynitride with a small fraction of sites substituted with Ir and adopt it as the first electrocatalyst in this material family, thereby enabling high activity and efficient utilization of precious metal content. From a series of characterization techniques, including X-ray absorption spectroscopy, atomic resolution electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, we prove the successful incorporation of Ir into a strontium tungsten oxynitride perovskite structure and discover the formation of a unique Ir-N/O coordination structure. Benefitting from this, the material exhibits a high activity toward the hydrogen evolution reaction, which exhibits an ultralow overpotential of only 8 mV to reach 10 mA/cm2geo in 0.5 M H2SO4 and 4.5-fold enhanced mass activity compared to commercial Pt/C. This work opens a new avenue for oxynitride material synthesis as well as pursuit of a new class of high-performance electrocatalysts.

3.
J Am Chem Soc ; 143(26): 9961-9971, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34161089

RESUMEN

While iridium-based perovskites have been identified as promising candidates for the oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolyzer applications, an improved fundamental understanding of these highly dynamic materials under reaction conditions is needed to inform more robust future catalyst design. Herein, we study the highly active SrIr0.8Zn0.2O3 perovskite for the OER in acid by employing electrochemical experiments with in situ and ex situ characterization techniques to understand the dynamic nature of this material at both short and long time scales. We observe initial intrinsic OER activity improvement with electrochemical cycling as well as an initial increase of Ir oxidation state under OER conditions via in situ X-ray absorption spectroscopy. We discover that the SrIr0.8Zn0.2O3 perovskite experiences an OER-induced metal to insulator transition (MIT) with extensive electrochemical cycling, caused by surface reorganization and changes to the material crystallinity that occur with exposure to an acidic and oxidizing environment. Our novel identification of an OER-induced MIT for iridate perovskites reveals an additional stability concern for iridate catalysts which are known to experience material dissolution challenges; this work ultimately aims to inform future catalyst material design for PEM water electrolysis applications.

4.
J Phys Chem Lett ; 11(18): 7476-7482, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32787301

RESUMEN

The nitrogen K-edge resonant inelastic X-ray scattering (RIXS) map of nitric oxide (NO) has been measured and simulated to provide a detailed analysis of the observed features. High-resolution experimental RIXS maps were collected using an in situ gas flow cell and a high-transmission soft X-ray spectrometer. Accurate descriptions of the ground, excited, and core-excited states are based upon restricted active space self-consistent-field calculations using second order multiconfigurational perturbation theory. The nitrogen K-edge RIXS map of NO shows a range of features that can be assigned to intermediate states arising from 1s → π* and 1s → Rydberg excitations; additional bands are attributed to doubly excited intermediate states comprising 1s → π* and π → π* excitations. These results provide a detailed picture of RIXS for an open-shell molecule and an extensive description of the core-excited electronic structure of NO, an important molecule in many chemical and biological processes.

5.
Nat Mater ; 16(1): 70-81, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27994241

RESUMEN

The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.

6.
Nat Commun ; 7: 13237, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796309

RESUMEN

Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

7.
Science ; 353(6303): 1011-1014, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27701108

RESUMEN

Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrOx/SrIrO3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO3 or anatase IrO2 motifs. The IrOx/SrIrO3 catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.

8.
J Phys Chem Lett ; 6(18): 3702-7, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26713778

RESUMEN

We develop a method that can be used to qualitatively map photocurrent on photoelectrode surfaces, and show its utility for morphologically controlled W-doped BiVO4. The method is based on the deliberate photoinduced sintering of Au NPs, a photon-driven process that indicates oxidation with nanoscale-resolution. This strategy allows us to identify the active regions on W-doped BiVO4 photoelectrodes, and we observe a strong dependence of photoactivity on the electrode morphology, controlled by varying the relative humidity during the sol-gel fabrication process. We find that photoelectrode morphologies that exhibit the most evenly distributed Au sintering are those that yield the highest photoelectrochemical (PEC) activity. Understanding the correlation between electrode morphology and PEC activity is essential for designing structured semiconductors for PEC water splitting.

9.
Phys Chem Chem Phys ; 17(21): 14003-11, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25946998

RESUMEN

Atomic layer deposition (ALD) is an attractive method to deposit uniform catalytic films onto high surface area electrodes. One interesting material for ALD synthesis is MnOx, a promising earth-abundant catalyst for the oxygen evolution reaction (OER). It has previously been shown that catalysts beginning as MnO synthesized using ALD on smooth glassy carbon (s-GC) electrodes and Mn2O3 obtained upon annealing MnO on s-GC are active OER catalysts. Here, we use ALD to deposit MnO on high surface area GC (HSA-GC) substrates, forming an active catalyst on a geometric surface area basis. We then characterize three types of catalysts, HSA-GC MnO, s-GC MnO, and annealed MnO (Mn2O3), using cyclic voltammetry (CV), scanning electron microscopy (SEM), and ex situ X-ray absorption spectroscopy (XAS). We show that under OER conditions, all three catalysts oxidize to similar surface states with a mixture of Mn(3+)/Mn(4+) and that MnOx surface area effects can account for the observed differences in the catalytic activity. We also demonstrate the need for a high surface area support for high OER activity on a geometric basis.

10.
J Phys Chem Lett ; 6(20): 4178-83, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26722794

RESUMEN

Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx.

11.
ChemSusChem ; 7(5): 1372-85, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24692256

RESUMEN

Photoelectrochemical (PEC) water splitting is a means to store solar energy in the form of hydrogen. Knowledge of practical limits for this process can help researchers assess their technology and guide future directions. We develop a model to quantify loss mechanisms in PEC water splitting based on the current state of materials research and calculate maximum solar-to-hydrogen (STH) conversion efficiencies along with associated optimal absorber band gaps. Various absorber configurations are modeled considering the major loss mechanisms in PEC devices. Quantitative sensitivity analyses for each loss mechanism and each absorber configuration show a profound impact of both on the resulting STH efficiencies, which can reach upwards of 25 % for the highest performance materials in a dual stacked configuration. Higher efficiencies could be reached as improved materials are developed. The results of the modeling also identify and quantify approaches that can improve system performance when working with imperfect materials.


Asunto(s)
Hidrógeno/química , Modelos Químicos , Energía Solar , Agua/química , Técnicas Electroquímicas , Electrodos , Procesos Fotoquímicos , Semiconductores
12.
Cell Mol Life Sci ; 68(5): 863-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20725762

RESUMEN

The intracellular second messenger cAMP is frequently used in induction media to induce mesenchymal stem cells (MSCs) into neural lineage cells. To date, an understanding of the role cAMP exerts on MSCs and whether cAMP can induce MSCs into functional neurons is still lacking. We found cAMP initiated neuron-like morphology changes early and neural differentiation much later. The early phase changes in morphology were due to cell shrinkage, which subsequently rendered some cells apoptotic. While the morphology changes occurred prior to the expression of neural markers, it is not required for neural marker expression and the two processes are differentially regulated downstream of cAMP-activated protein kinase A. cAMP enabled MSCs to gain neural marker expressions with neuronal function, such as, calcium rise in response to neuronal activators, dopamine, glutamate, and potassium chloride. However, only some of the cells induced by cAMP responded to the three neuronal activators and further lack the neuronal morphology, suggesting that although cAMP is able to direct MSCs towards neural differentiation, they do not achieve terminal differentiation.


Asunto(s)
Diferenciación Celular , AMP Cíclico/fisiología , Células Madre Mesenquimatosas/citología , Neuronas/citología , Animales , Apoptosis , Biomarcadores , Calcio/metabolismo , Células Cultivadas , Femenino , Células Madre Mesenquimatosas/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Exp Cell Res ; 316(5): 716-27, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20026039

RESUMEN

Saturated free fatty acids (FFAs), e.g. palmitate, have long been shown to induce toxicity and cell death in various types of cells. In this study, we demonstrate that cAMP synergistically amplifies the effect of palmitate on the induction of cell death in human hepatocellular carcinoma cell line, HepG2 cells. Elevation of cAMP level in palmitate-treated cells led to enhanced mitochondrial fragmentation, mitochondrial reactive oxygen species (ROS) generation and mitochondrial biogenesis. Mitochondrial fragmentation precedes mitochondrial ROS generation and mitochondrial biogenesis, and may contribute to mitochondrial ROS overproduction and subsequent mitochondrial biogenesis. Fragmentation of mitochondria also facilitated the release of cytotoxic mitochondrial proteins, such as Smac, from the mitochondria and subsequent activation of caspases. However, cell death induced by palmitate and cAMP was caspase-independent and mainly necrotic.


Asunto(s)
Muerte Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Células Hep G2 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Palmitatos , 1-Metil-3-Isobutilxantina/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Caspasas/metabolismo , Muerte Celular/fisiología , Colforsina/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Grasos/metabolismo , Células Hep G2/efectos de los fármacos , Células Hep G2/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Palmitatos/metabolismo , Palmitatos/farmacología , Inhibidores de Fosfodiesterasa/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...